A class of weak Hopf algebras related to a Borcherds-Cartan matrix

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 3914611
(http://iopscience.iop.org/0305-4470/39/47/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 04:57

Please note that terms and conditions apply.

A class of weak Hopf algebras related to a Borcherds-Cartan matrix

Wu Zhixiang
Mathematics Department, Zhejiang University, Hangzhou, 310027, People's Republic of China
E-mail: wzx@zju.edu.cn

Received 30 April 2006, in final form 16 October 2006
Published 8 November 2006
Online at stacks.iop.org/JPhysA/39/14611

Abstract

In this paper we define a new kind of quantized enveloping algebra of a generalized Kac-Moody algebra \mathcal{G}. We denote this algebra by $w U_{q}^{\tau}(\mathcal{G})$. It is a noncommutative and noncocommutative weak Hopf algebra. It has a homomorphic image which is isomorphic to the usual quantum enveloping algebra $U_{q}(\mathcal{G})$ of \mathcal{G}.

PACS number: 02.20.Sv
Mathematics Subject Classification: 17B67, 17B10

1. Introduction

In his study of Monstrous moonshine [3-5], Borcherds introduced a new class of infinitedimensional Lie algebras called generalized Kac-Moody algebras. These generalized KacMoody algebras have a contravariant bilinear form which is almost positive definite. The fixed point algebra of any Kac-Moody algebra under a diagram automorphism is a generalized Kac-Moody algebra. A generalized Kac-Moody algebra can be regarded as a Kac-Moody algebra with imaginary simple roots. More explicitly, a generalized Kac-Moody algebra is determined by a Borcherds-Cartan matrix $A=\left(a_{i j}\right)_{(i, j) \in I \times I}$, where either $a_{i i}=2$, or $a_{i i} \leqslant 0$. If $a_{i i} \leqslant 0$, then the index i is called imaginary, and the corresponding simple root α_{i} is called an imaginary simple root. In this paper, the set $\left\{i \in I \mid a_{i i}=2\right\}$ is denoted by I^{+}. Set $I^{\text {im }}=I \backslash I^{+}$. The structure and the representation theory of generalized Kac-Moody algebras are very similar to those of Kac-Moody algebras, and many basic facts about the latter can be extended to the former. For example, the Weyl-Kac formula for an irreducible representation over a Kac-Moody algebra is generalized to the Borcherds-Weyl-Kac character formula for an irreducible representation over a generalized Kac-Moody algebra as follows. We have

$$
\operatorname{ch} V(\lambda)=\frac{\sum_{w \in W} \sum_{F \subseteq T, F \perp \lambda}(-1)^{l(w)+|F|} \mathrm{e}^{w(\lambda+\rho-s(F))}}{\sum_{w \in W, F \subseteq T}(-1)^{l(w)+|F|} \mathrm{e}^{w(\rho-s(F))}}
$$

where T is the set of all imaginary simple roots, F runs all over finite subsets of T such that any two elements in F are mutually perpendicular. We denote by $s(F)$ the sum of the roots in F.

On the other hand, many mathematicians are interested in the generalization of Hopf algebras, whose importance has been recognized in both mathematics and physics. One way to do this is to introduce a kind of weak co-product such that $\Delta(1) \neq 1 \otimes 1$ in [1]. The face algebras [7] and generalized Kac algebras [16] are examples of this class of weak Hopf algebras. Li and Duplij have defined and studied another kind of weak Hopf algebra [12]. A bialgebra $(H, \mu, \eta, \Delta, \varepsilon)$ is called a weak Hopf algebra if there is an anti-automorphism T such that $T * \mathrm{id}_{H} * T=\mathrm{id}_{H}$ and $\mathrm{id}_{H} * T * \mathrm{id}_{H}=T$, where id_{H} is the identity map and $*$ is the convolution product. Hopf algebras, and left or right Hopf [13, 14] algebras are weak Hopf algebras in this sense. In the present paper a weak Hopf algebra always means the weak Hopf algebra in this sense. The weak quantized enveloping algebras of semi-simple Lie algebras are also weak Hopf algebras [15]. Our aim is to give more nontrivial examples of weak Hopf algebras. Thanks to the definition of quantized enveloping algebra $U_{q}(\mathcal{G})$ associated with a generalized Kac-Moody algebra \mathcal{G} defined in [7], we can also replace the group $G\left(U_{q}(\mathcal{G})\right)$ of group-like elements by some regular monoid as in [15]; we use a new generator J instead of the projector in [14]. Our new generator J satisfies $J^{m}=J$ for some integer $m \geqslant 3$. In this way, we obtain a subclass of weak Hopf algebra $w U_{q}^{\tau}(\mathcal{G})$. This weak Hopf algebra has a homomorphic image, which is isomorphic to a sub-Hopf algebra of the quantized enveloping algebra $U_{q}(\mathcal{G})$ as Hopf algebras. As in the case of the classic quantum group $U_{q}(\mathcal{G})$, we try to determine irreducible representation of $w U_{q}(\mathcal{G})$.

Finally, let us outline the structure of this paper. In section 2, we recall some basic facts related to the quantized enveloping algebra of a generalized Kac-Moody algebra. In section 3, we give the definition of $w U_{q}^{\tau}(\mathcal{G})$. We study the weak Hopf structure of $w U_{q}^{\tau}(\mathcal{G})$ in section 4 . In the final section, we study the irreducible representation of $w U_{q}^{\tau}(\mathcal{G})$.

2. Notations and preliminaries

In this section, we fix notations and recall fundamental results about generalized Kac-Moody algebras.

Let $I=\{1, \ldots, n\}$ or the set of positive integers, and $A=\left(a_{i j}\right)_{I \times I}$, a Borcherds-Cartan matrix, i.e., it satisfies
(1) $a_{i i}=2$ or $a_{i i} \leqslant 0$ for all $i \in I$,
(2) $a_{i j} \leqslant 0$ for all $i \neq j$,
(3) $a_{i j} \in \mathbf{Z}$,
(4) $a_{i j}=0$ if and only if $a_{j i}=0$.

We say that an index i is real if $a_{i i}=2$ and imaginary if $a_{i i} \leqslant 0$. We denote $I^{+}=$ $\left\{i \in I \mid a_{i i}=2\right\}$ and $I^{\mathrm{im}}=I-I^{+}$. In addition, we assume that no $a_{i i}=0$ and all $a_{i i} \in 2 \mathbf{Z}$. In [9] Kang considered Borcherds-Cartan matrices with charge

$$
\mathbf{m}=\left\{\left(m_{i} \in \mathbf{Z}_{\geqslant 0}\right) \mid i \in I, m_{i}=1 \text { for } i \in I^{+}\right\} .
$$

The charge m_{i} is the multiplicity of the simple root corresponding to $i \in I$. In this paper, we follow [11] and assume that $m_{i}=1$ for all $i \in I$. However, we do not lose generality by this hypothesis. Indeed, if we take Borcherds-Cartan matrices with some of the rows and columns identical, then the generalized Kac-Moody algebras with charge introduced in [9] can be recovered from those in the present paper by identifying the $h_{i} s$ and $d_{i} s$ (and hence the $\alpha_{i} s$) corresponding to these identical rows and columns. So we always assume $m_{i}=1$ for all $i \in I$.

Moreover, we also assume that A is symmetrizable, that is, there is a diagonal matrix $D=\operatorname{diag}\left\{0<s_{i} \in \mathbf{Z} \mid i \in I\right\}$ such that $D A$ is a symmetric matrix.

Let $P^{\vee}=\left(\oplus_{i \in I} \mathbf{Z} h_{i}\right) \oplus\left(\oplus_{i \in I} \mathbf{Z} d_{i}\right)$ be a free Abelian group generated by the set $\left\{h_{i}, d_{i} \mid i \in I\right\}$. This free Abelian group is called the co-weight lattice of A. The element h_{i} in $\Pi^{\imath}=\left\{h_{i} \mid i \in I\right\}$ is called a simple co-weight. We call $\Pi^{`}$ the set of all simple co-weights. The space $\mathcal{H}=\mathbf{Q} \otimes_{\mathbf{z}} P^{\vee}$ over the rational number field \mathbf{Q} is said to be a Cartan subalgebra. The weight lattice is defined to be $P:=\left\{\lambda \in \mathcal{H}^{*} \mid \lambda\left(P^{\vee}\right) \subseteq \mathbf{Z}\right\}$, where \mathcal{H}^{*} is the dual space of the Cartan subalgebra $\mathcal{H}=\mathbf{Q} \otimes_{\mathbf{z}} P^{\imath}$. We denote by P^{+}the set $\left\{\lambda \in P \mid \lambda\left(h_{i}\right) \geqslant 0\right.$, for every $\left.i \in I\right\}$ of dominant integral weights.

Define $\alpha_{i}, \Lambda_{i} \in \mathcal{H}^{*}$ by

$$
\begin{array}{ll}
\alpha_{i}\left(h_{j}\right)=a_{j i}, & \alpha_{i}\left(d_{j}\right)=\delta_{i j} \\
\Lambda_{i}\left(h_{j}\right)=\delta_{i j}, & \Lambda_{i}\left(d_{j}\right)=0
\end{array}
$$

Then $\alpha_{i}, i \in I$ are called simple roots of A. Let $\Pi=\left\{\alpha_{i} \mid i \in I\right\} \subset P$ be the set of simple roots. The free Abelian group $Q=\oplus_{i \in I} \mathbf{Z} \alpha_{i}$ is called the root lattice. Set $Q_{+}=\sum_{i \in I} \mathbf{Z}_{\geqslant 0} \alpha_{i}$ and $Q_{-}=-Q_{+}$. For any $\alpha \in Q_{+}$, we can write $\alpha=\sum_{k=1}^{n} \alpha_{i_{k}}$ for $i_{1}, i_{2}, \ldots, i_{n} \in I$. We set $h t(\alpha)=n$ and call it the height of α.

Let (.|.) be the bilinear form on $\left(\oplus_{i}\left(\mathbf{Q} \alpha_{i} \oplus \mathbf{Q} \Lambda_{i}\right)\right) \times \mathcal{H}^{*}$ defined by

$$
\left(\alpha_{i} \mid \lambda\right)=s_{i} \lambda\left(h_{i}\right), \quad\left(\Lambda_{i} \mid \lambda\right)=s_{i} \lambda\left(d_{i}\right)
$$

Since it is symmetric on $\left(\oplus_{i}\left(\mathbf{Q} \alpha_{i} \oplus \mathbf{Q} \Lambda_{i}\right)\right) \times\left(\oplus_{i}\left(\mathbf{Q} \alpha_{i} \oplus \mathbf{Q} \Lambda_{i}\right)\right)$, one can extend this to a symmetric bilinear form on \mathcal{H}^{*}. Then such a form is nondegenerate.

We always assume that \mathbf{K} is a field of characteristic 0 . Let q be an indeterminate variable over \mathbf{K} and $q_{i}=q^{s_{i}}$. For an indeterminant v and an integer m, let

$$
[m]_{v}=\frac{v^{m}-v^{-m}}{v-v^{-1}}, \quad[m]!_{v}=[m]_{v} \cdots[1]_{v},[0]_{v}=1
$$

and

$$
\left[\begin{array}{c}
m \\
s
\end{array}\right]_{v}=\frac{[m]!_{v}}{[s]!_{v}[m-s]!_{v}}
$$

Definition 2.1. The quantum generalized Kac-Moody algebra $U_{q}^{\prime}(\mathcal{G})$ associated with a Borcherds-Cartan datum ($A, P^{\vee}, P, \Pi^{`}, \Pi$) is the associative algebra with unit 1 over a field \mathbf{K} of characteristic 0, generated by the symbols $e_{i}, f_{i}(i \in I)$ and P^{\vee} subject to the following defining relations:

$$
\begin{aligned}
& q^{0}=1, \quad q^{h} q^{h^{\prime}}=q^{h+h^{\prime}} \quad \forall h, h^{\prime} \in P^{\vee}, \\
& q^{h} e_{i} q^{-h}=q^{\alpha_{i}(h)} e_{i}, \quad q^{h} f_{i} q^{-h}=q^{-\alpha_{i}(h)} f_{i}, \\
& e_{i} f_{j}-f_{j} e_{i}=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \quad \text { where } \quad k_{i}=q^{s_{i} h_{i}} \text {, } \\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} e_{i}^{1-a_{i j}-r} e_{j} e_{i}^{r}=0 \quad \text { if } \quad a_{i i}=2, i \neq j, \\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} f_{i}^{1-a_{i j}-r} f_{j} f_{i}^{r}=0 \quad \text { if } \quad a_{i i}=2, i \neq j \text {, } \\
& e_{i} e_{j}-e_{j} e_{i}=f_{i} f_{j}-f_{j} f_{i}=0, \quad \text { if } \quad a_{i j}=0 .
\end{aligned}
$$

The quantum generalized $\mathrm{Kac}-$ Moody algebra $U_{q}^{\prime}(\mathcal{G})$ has a Hopf algebra structure with the co-multiplication Δ, the co-unit ε, and antipode S defined by

$$
\begin{aligned}
& \Delta\left(q^{h}\right)=q^{h} \otimes q^{h} \\
& \Delta\left(e_{i}\right)=e_{i} \otimes k_{i}^{-1}+1 \otimes e_{i}, \\
& \Delta\left(f_{i}\right)=k_{i} \otimes f_{i}+f_{i} \otimes 1, \\
& \varepsilon\left(q^{h}\right)=1, \varepsilon\left(e_{i}\right)=\varepsilon\left(f_{i}\right)=0, \\
& S\left(q^{h}\right)=q^{-h}, S\left(e_{i}\right)=-e_{i} k_{i}, S\left(f_{i}\right)=-k_{i}^{-1} f_{i}
\end{aligned}
$$

for all $h \in P^{\vee}$ and $i \in I$.
Let $U_{q}^{+}(\mathcal{G})$ and $U_{q}^{-}(\mathcal{G})$ be the subalgebras of $U_{q}^{\prime}(\mathcal{G})$ generated by elements e_{i} and f_{i} respectively, for $i \in I$, and let $U_{q}^{0 \prime}(\mathcal{G})$ be the subalgebra of $U_{q}(\mathcal{G})$ generated by $q^{h}\left(h \in P^{\vee}\right)$. Then we have the triangular decomposition $[1,8]$

$$
U_{q}^{\prime}(\mathcal{G})=U_{q}^{-}(\mathcal{G}) \otimes U_{q}^{0 \prime}(\mathcal{G}) \otimes U_{q}^{+}(\mathcal{G})
$$

Denote by $U_{q}(\mathcal{G})$ the subalgebra of $U_{q}^{\prime}(\mathcal{G})$ generated by $e_{i}, f_{i}, q^{ \pm s_{i} h_{i}}, q^{ \pm d_{i}}$. Then the triangular decomposition of $U_{q}^{\prime}(\mathcal{G})$ induces a triangular decomposition of $U_{q}(\mathcal{G})$ as follows:

$$
U_{q}(\mathcal{G})=U_{q}^{-}(\mathcal{G}) \otimes U_{q}^{0}(\mathcal{G}) \otimes U_{q}^{+}(\mathcal{G})
$$

where $U_{q}^{0}(\mathcal{G})=U_{q}^{0 \prime}(\mathcal{G}) \cap U_{q}(\mathcal{G})$.

3. The τ-type algebras $w U_{q}^{\tau}(\mathcal{G})$

Since the characteristic of the field \mathbf{K} is equal to zero, $\frac{1}{m} \in \mathbf{K}$ for any nonzero integer m. Let m be a fixed positive integer. To generalize the invertibility condition $k_{i} k_{i}^{-1}=1$ in $U_{q}(\mathcal{G})$, let us introduce some new generators J, K_{i} and \bar{K}_{i}, which are subject to the following relations:

$$
\begin{equation*}
J^{m}=J, \quad J=K_{i} \bar{K}_{i}=\bar{K}_{i} K_{i}=D_{i} \bar{D}_{i}=\bar{D}_{i} D_{i} \tag{3.1}
\end{equation*}
$$

Suppose K_{i} and \bar{K}_{i} are not zero divisors. Then

$$
\begin{array}{ll}
K_{i} J^{m-1}=J^{m-1} K_{i}=K_{i}, & \bar{K}_{i} J^{m-1}=J^{m-1} \bar{K}_{i}=\bar{K}_{i} . \\
D_{i} J^{m-1}=J^{m-1} D_{i}=D_{i}, & \bar{D}_{i} J^{m-1}=J^{m-1} \bar{D}_{i}=\bar{D}_{i} . \tag{3.3}
\end{array}
$$

Although we get (3.2) and (3.3) by the assumption that K_{i} and $\overline{K_{i}}$ are not zero divisors, we do not assume that K_{i} and $\overline{K_{i}}$ are not zero divisors. We only assume that (3.2) and (3.3) hold in this paper. We call an element E_{i} of type $m-1$ if it satisfies

$$
\begin{equation*}
K_{j} E_{i}=q_{i}^{a_{i j}} E_{i} K_{j}, \quad \bar{K}_{j} E_{i}=q_{i}^{-a_{i j}} E_{i} \bar{K}_{j} \tag{3.4}
\end{equation*}
$$

Similarly, if

$$
\begin{equation*}
K_{j} F_{i}=q_{i}^{-a_{i j}} F_{i} K_{j}, \quad \bar{K}_{j} F_{i}=q_{i}^{a_{i j}} F_{i} \bar{K}_{j} \tag{3.5}
\end{equation*}
$$

then F_{i} is said to be type $m-1$. Suppose

$$
\begin{equation*}
K_{j} E_{i} J^{t} \bar{K}_{j}=q_{i}^{a_{i j}} E_{i} J^{t+1}, \quad E_{i} J=J E_{i}, \quad E_{i} J^{m-1}=E_{i} \tag{3.6}
\end{equation*}
$$

for some $0 \leqslant t \leqslant m-2$, then we say that E_{i} is type t.
Similarly, F_{i} is type t if it satisfies the following:

$$
\begin{equation*}
K_{j} F_{i} J^{t} \bar{K}_{j}=q_{i}^{-a_{i j}} F_{i} J^{t+1}, \quad F_{i} J=J F_{i}, \quad F_{i} J^{m-1}=F_{i} \tag{3.7}
\end{equation*}
$$

From the above definitions, one can obtain the following result.
Proposition 3.1. (1) E_{i} is type t for $0 \leqslant t \leqslant m-2$ if and only if $E_{i} J^{t+1}$ is type $m-1$ and $E_{i} J=J E_{i}$.
(2) F_{i} is type tfor $0 \leqslant t \leqslant m-2$ if and only if $F_{i} J^{t+1}$ is type $m-1$ and $F_{i} J=J F_{i}$.

Proof. The proof of (1) is similar to that of (2). So we only give the proof of (1).
If E_{i} is type t, then

$$
K_{j} E_{i} J^{t+1}=K_{j} E_{i} J^{t} J=K_{j} E_{i} J^{t} \bar{K}_{j} K_{j}=q_{i}^{a_{i j}} E_{i} K_{j} J^{t+1}
$$

and

$$
\bar{K}_{j}\left(q_{i}^{a_{i j}} E_{i} J^{t+1}\right)=\bar{K}_{j}\left(K_{j} E_{i} J^{t} \bar{K}_{j}\right)=J E_{i} \bar{K}_{j} J^{t}=E_{i} J^{t+1} \bar{K}_{j}
$$

So $E_{i} J^{t+1}$ is type $m-1$ by definition. Conversely, if $E_{i} J^{t+1}$ is type $m-1$, then

$$
K_{j} E_{i} J^{t} \bar{K}_{j}=K_{j} E_{i} J^{t} J^{m-1} \bar{K}_{j}=q_{i}^{a_{i j}} E_{i} J^{t+1} K_{j} J^{m-2} K_{j}=q_{i}^{a_{i j}} E_{i} J^{t+1}
$$

and

$$
E_{i} J=E_{i} K_{j} \bar{K}_{j}=q_{i}^{-a_{i j}} K_{j} E_{i} \bar{K}_{j}=K_{j} \bar{K}_{j} E_{i}=J E_{i}
$$

That is, E_{i} is type t satisfying $J E_{i}=E_{i} J$. This completes the proof.
The types of E_{i} and F_{i} are denoted by $\kappa_{i}, \bar{\kappa}$, respectively. Let $\tau=\left(\left\{\kappa_{i}\right\}_{i \in I} \mid\left\{\overline{\kappa_{i}}\right\}_{i \in I}\right)$. The τ is called admissible if it satisfies the following condition:
(1) If $\kappa_{i}=t$, then $\bar{\kappa}_{i}=t$ for $1 \leqslant t \leqslant m-2$.
(2) If $\kappa_{i}=0$, then $\bar{\kappa}_{i}=0, m-1$.
(3) If $\kappa_{i}=m-1$, then $\bar{\kappa}_{i}=0, m-1$.

Now, we can give the definition of the weak quantum algebra of type τ as follows.
Definition 3.1. Suppose τ is admissible. The type τ weak quantum algebra $w U_{q}^{\tau}(\mathcal{G})$ associated the generalized Kac-Moody algebra \mathcal{G} an associative algebra with unit 1 over a field \mathbf{K} of characteristic 0, generated by the symbols J, which is in the centre of this algebra, $E_{i}, F_{i}(i \in I)$ and $K_{i}, D_{i}(i \in I)$ subject to the following defining relations:

$$
\begin{array}{ll}
J^{m}=J=K_{i} \bar{K}_{i}=D_{i} \bar{D}_{i}, \\
K_{i} \bar{K}_{j}=\bar{K}_{j} K_{i}, \quad K_{i} K_{j}=K_{j} K_{i}, & \bar{K}_{i} \bar{K}_{j}=\bar{K}_{j} \bar{K}_{i}, \\
D_{i} \bar{D}_{j}=\bar{D}_{j} D_{i}, \quad D_{i} D_{j}=D_{j} D_{i}, \quad & \bar{D}_{i} \bar{D}_{j}=\bar{D}_{j} \bar{D}_{i}, \\
D_{i} \bar{K}_{j}=\bar{K}_{j} D_{i}, \quad K_{i} D_{j}=D_{j} K_{i}, & \bar{D}_{i} K_{j}=K_{j} \bar{D}_{i}, \\
E_{i} F_{i} \text { are type } \tau, & \\
E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-\bar{K}_{i}}{q_{i}-q_{i}^{-1}}, & \tag{3.13}
\end{array}
$$

$$
\begin{array}{ll}
\sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} E_{i}^{1-a_{i j}-r} E_{j} E_{i}^{r}=0 & \text { if } \quad a_{i i}=2, i \neq j, \\
\sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} F_{i}^{1-a_{i j}-r} F_{j} F_{i}^{r}=0 & \text { if } \quad a_{i i}=2, i \neq j, \\
E_{i} E_{j}-E_{j} E_{i}=F_{i} F_{j}-F_{j} F_{i}=0, & \text { if } \quad a_{i j}=0 . \tag{3.16}
\end{array}
$$

If $m=1$, then we set $J^{0}=1$. Since P^{\vee} is spanned by $h_{i}, d_{i}, w U_{q}^{T}(\mathcal{G})=U_{q}(\mathcal{G})$ provided that we identify K_{i} with $q^{s_{i} h_{i}}, \bar{K}_{i}$ with $q^{-s_{i} h_{i}}, D_{i}$ with $q^{d_{i}}$ and \bar{D}_{i} with $q^{-d_{i}}$. If $m=2$ and \mathcal{G} is a semi-simple Lie algebra, then $w U_{q}^{T}(\mathcal{G})$ has been defined and studied by Yang in [5]. Note that the type zero was called type two by Yang. The following conclusion can be proved directly from definition.

Proposition 3.2. (1) E_{i} is type t for $0 \leqslant t \leqslant m-2$ if and only if E_{i} is type $m-1$ and $E_{i} J^{m-1}=J^{m-1} E_{i}=E_{i}$.
(2) F_{i} is type t for $0 \leqslant t \leqslant m-2$ if and only if F_{i} is type $m-1$ and $F_{i} J^{m-1}=J^{m-1} F_{i}$.

Proof. The proof of (1) is similar to that of (2). So we only give the proof of (1).
If E_{i} is type t for $0 \leqslant t \leqslant m-2$, then $K_{j} E_{i} J^{t+1}=q_{i}^{a_{i j}} E_{i} J^{t+1} K_{j}$ by proposition 3.1. Hence,

$$
K_{j} E_{i}=K_{j} E_{i} J^{m-1}=K_{j} E_{i} J^{t+1} J^{m-t-2}=q_{i}^{a_{i j}} E_{i} J^{t+1} K_{j} J^{m-t-2}=q_{i}^{a_{i j}} E_{i} K_{j}
$$

and
$\bar{K}_{j} E_{i}=\bar{K}_{j} E_{i} J^{m-1}=\bar{K}_{j} E_{i} J^{t+1} J^{m-t-2}=q_{i}^{-a_{i j}} E_{i} J^{t+1} \bar{K}_{j} J^{m-t-2}=q_{i}^{-a_{i j}} E_{i} \bar{K}_{j}$.
This proves the claim that E_{i} is type $m-1$.
Conversely, if E_{i} is type $m-1$ and $J^{m-1} E_{i}=E_{i}$, then

$$
K_{j} E_{i} J^{t} \bar{K}_{j}=q_{i}^{a_{i j}} E_{i} J^{t} \bar{K}_{j} K_{j}=q_{i}^{a_{i j}} E_{i} J^{t+1}
$$

This completes the proof.
From this proposition, we know that types t for $0 \leqslant t \leqslant m-2$ are the same. However, in the next section, we will see that the different types have different co-multiplications.

4. The weak Hopf algebra structure of $w \boldsymbol{U}_{q}^{\tau}(\mathcal{G})$

Since the (weak) Hopf algebra structure of $w U_{q}^{\tau}(\mathcal{G})$ has been studied in the cases $m=1,2$, we always assume that $m \geqslant 3$ in the following. To make the τ-type algebra $w U_{q}^{\tau}(\mathcal{G})$ become a weak Hopf algebra, we define three maps,

$$
\begin{aligned}
& \Delta: w U_{q}^{\tau}(\mathcal{G}) \rightarrow w U_{q}^{\tau}(\mathcal{G}) \otimes w U_{q}^{\tau}(\mathcal{G}), \\
& \varepsilon: w U_{q}^{\tau}(\mathcal{G}) \rightarrow \mathbf{K}, \\
& T: w U_{q}^{\tau}(\mathcal{G}) \rightarrow w U_{q}^{\tau}(\mathcal{G}),
\end{aligned}
$$

as follows:

$$
\begin{array}{ll}
\Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, & \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, \\
\Delta\left(D_{i}\right)=D_{i} \otimes D_{i}, & \Delta\left(\bar{D}_{i}\right)=\bar{D}_{i} \otimes \bar{D}_{i}, \\
\Delta(J)=J \otimes J & \tag{4.3}
\end{array}
$$

$$
\begin{equation*}
\Delta\left(E_{i}\right)=J^{m-1-t} \otimes E_{i}+E_{i} \otimes K_{i} J^{t}, \quad E_{i} \text { is type } t \tag{4.4}
\end{equation*}
$$

If $t=0$, then $\Delta\left(E_{i}\right)=J^{m-1} \otimes E_{i}+E_{i} \otimes K_{i}$. If $t=m-1$, then $\Delta\left(E_{i}\right)=1 \otimes E_{i}+E_{i} \otimes K_{i}$, since $K_{i} J^{m-1}=K_{i}$.

$$
\begin{align*}
& \Delta\left(F_{i}\right)=F_{i} \otimes J^{m-1-t}+\bar{K}_{i} J^{t} \otimes F_{i}, \quad F_{i} \text { is type } t \tag{4.5}\\
& \varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=1, \quad \varepsilon\left(D_{i}\right)=\varepsilon\left(\bar{D}_{i}\right)=1, \quad \varepsilon(J)=1, \tag{4.6}\\
& \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \tag{4.7}\\
& T(1)=1, \quad T\left(K_{i}\right)=\bar{K}_{i} J^{m-2}, \quad T\left(\bar{K}_{i}\right)=K_{i} J^{m-2}, \tag{4.8}\\
& T(J)=J^{m-2}, \quad T\left(D_{i}\right)=\bar{D}_{i} J^{m-2}, \quad T\left(\bar{D}_{i}\right)=D_{i} J^{m-2}, \tag{4.9}\\
& T\left(E_{i}\right)=-E_{i} \bar{K}_{i} J^{m-2}, \quad T\left(F_{i}\right)=-K_{i} F_{i} J^{m-2} . \tag{4.10}
\end{align*}
$$

Let us use μ, η to denote the multiplication and unit of the algebra $w U_{q}^{\tau}(\mathcal{G})$, respectively. In this section, we will prove the following theorem.

Theorem 4.1. $\left(w U_{q}^{\tau}(\mathcal{G}), \mu, \eta, \Delta, \varepsilon\right)$ is a weak Hopf algebra.
We split the proof of this theorem into two lemmas.
Lemma 4.2. $w U_{q}^{\tau}(\mathcal{G})$ is a bialgebra with co-multiplication Δ and co-unit ε.
Proof. It can be shown by direct calculation that the following relations hold:

$$
\begin{array}{ll}
\Delta\left(K_{i}\right) \Delta\left(\bar{K}_{j}\right)=\Delta\left(\bar{K}_{j}\right) \Delta\left(K_{i}\right), & \Delta\left(D_{i}\right) \Delta\left(\bar{D}_{j}\right)=\Delta\left(\bar{D}_{j}\right) \Delta\left(D_{i}\right), \\
\Delta(J)=\Delta\left(K_{i}\right) \Delta\left(\bar{K}_{i}\right)=\Delta\left(D_{i}\right) \Delta\left(\bar{D}_{i}\right), & \Delta\left(J^{m-1} \bar{K}_{i}\right)=\Delta\left(\bar{K}_{i}\right), \\
\Delta\left(J^{m-1} K_{i}\right)=\Delta\left(K_{i}\right), & \Delta\left(J^{m-1} \bar{D}_{i}\right)=\Delta\left(\bar{D}_{i}\right), \\
\Delta\left(J^{m-1} D_{i}\right)=\Delta\left(D_{i}\right), & \varepsilon\left(D_{i} \bar{D}_{j}\right)=\varepsilon\left(D_{i}\right) \varepsilon\left(\bar{D}_{j}\right), \\
\varepsilon\left(K_{i} \bar{K}_{j}\right)=\varepsilon\left(K_{i}\right) \varepsilon\left(\bar{K}_{j}\right), & \varepsilon\left(J^{m-1} \bar{K}_{j}\right)=\varepsilon\left(\bar{K}_{j}\right), \\
\varepsilon\left(J^{m-1} K_{i}\right)=\varepsilon\left(K_{i}\right), & \varepsilon\left(J^{m-1} \bar{D}_{j}\right)=\varepsilon\left(\bar{D}_{j}\right), \\
\varepsilon\left(J^{m-1} \bar{D}_{i}\right)=\varepsilon\left(D_{i}\right), & \varepsilon\left(F_{i}\right) \varepsilon\left(\bar{K}_{j}\right)=q_{i}^{a_{i j}} \varepsilon\left(F_{j}\right) \varepsilon\left(\bar{K}_{j}\right), \\
\varepsilon\left(K_{j}\right) \varepsilon\left(E_{i}\right)=q_{i}^{a_{i j}} \varepsilon\left(E_{i}\right) \varepsilon\left(K_{j}\right), & \varepsilon\left(F_{i}\right) \varepsilon\left(J^{t+1}\right)=\varepsilon\left(F_{j}\right), \\
\varepsilon\left(J^{t+1}\right) \varepsilon\left(E_{i}\right)=\varepsilon\left(E_{i}\right), & \varepsilon\left(K_{i}\right)-\varepsilon\left(\bar{K}_{i}\right) \\
\varepsilon\left(E_{i}\right) \varepsilon\left(F_{j}\right)-\varepsilon\left(F_{j}\right) \varepsilon\left(E_{i}\right)=\delta_{i j} \frac{\varepsilon\left(q_{i}^{-1}\right.}{q_{i}} .
\end{array}
$$

If E_{i} is type $m-1$, then

$$
\begin{aligned}
\Delta\left(K_{j}\right) \Delta\left(E_{i}\right) & =\left(K_{j} \otimes K_{j}\right)\left(\left(1 \otimes E_{i}+E_{i} \otimes K_{i}\right)\right. \\
& =K_{j} \otimes K_{j} E_{i}+K_{j} E_{i} \otimes K_{j} K_{i} \\
& =q_{i}^{a_{i j}} \Delta\left(E_{i}\right) \Delta\left(K_{j}\right)
\end{aligned}
$$

If E_{i} is type t for $0 \leqslant t \leqslant m-2$, then

$$
\begin{aligned}
\Delta\left(K_{j}\right) \Delta\left(E_{i}\right) \Delta\left(J^{t+1}\right) & =\left(K_{j} \otimes K_{j}\right)\left(\left(J^{m-1-t} \otimes E_{i}+E_{i} \otimes K_{i} J^{t}\right)\left(J^{t+1} \otimes J^{t+1}\right)\right. \\
& =K_{j} J^{m} \bar{K}_{j} \otimes K_{j} E_{i} J^{t+1}+K_{j} E_{i} J^{t+1} \otimes K_{j} K_{i} J^{t+1} \\
& =q_{i}^{a_{i j}} \Delta\left(E_{i}\right) \Delta\left(J^{t+1}\right) \Delta\left(K_{j}\right),
\end{aligned}
$$

and

$$
\Delta\left(E_{i}\right) \Delta(J)=\left(J^{m-t} \otimes E_{i} J+E_{i} J \otimes K_{i} J^{t+1}\right)=\Delta(J) \Delta\left(E_{i}\right)
$$

Hence, $\Delta\left(K_{j}\right) \Delta\left(E_{i}\right) \Delta\left(J^{t}\right) \Delta\left(\bar{K}_{j}\right)=q_{i}^{a_{i j}} \Delta\left(E_{i}\right) \Delta\left(J^{t+1}\right)$ for $0 \leqslant t \leqslant m-2$. Similarly, one can prove

$$
\Delta\left(K_{j}\right) \Delta\left(F_{i}\right) \Delta\left(J^{t}\right) \Delta\left(\bar{K}_{j}\right)=q_{i}^{-a_{i j}} \Delta\left(F_{i}\right) \Delta\left(J^{t+1}\right)
$$

for $0 \leqslant t \leqslant m-2$ provided that F_{i} is type t, and

$$
\Delta\left(K_{j}\right) \Delta\left(F_{i}\right)=q_{i}^{-a_{i j}} \Delta\left(F_{i}\right) \Delta\left(K_{j}\right), \quad \Delta\left(\bar{K}_{j}\right) \Delta\left(F_{i}\right)=q_{i}^{a_{i j}} \Delta\left(F_{i}\right) \Delta\left(\bar{K}_{j}\right)
$$

if F_{i} is type $m-1$. Next we prove that

$$
\begin{equation*}
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)-\Delta\left(F_{j}\right) \Delta\left(E_{i}\right)=\delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} \tag{4.11}
\end{equation*}
$$

Suppose E_{i} and F_{j} are types r, s, respectively, for $0 \leqslant r, s \leqslant m-2$, we have

$$
\begin{aligned}
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)- & \Delta\left(F_{j}\right) \Delta\left(E_{i}\right)=\left(J^{m-1-r} \otimes E_{i}+E_{i} \otimes K_{i} J^{r}\right)\left(F_{j} \otimes J^{m-1-s}+\bar{K}_{j} J^{s} \otimes F_{j}\right) \\
& -\left(F_{j} \otimes J^{m-1-s}+\bar{K}_{j} J^{s} \otimes F_{j}\right)\left(J^{m-1-r} \otimes E_{i}+E_{i} \otimes K_{i} J^{r}\right) \\
= & J^{m-1-r} F_{j} \otimes E_{i} J^{m-1-s}+\bar{K}_{j} J^{m-r-1+s} \otimes E_{i} F_{j}+E_{i} F_{j} \otimes K_{i} J^{m-1-s+r} \\
& +E_{i} \bar{K}_{j} J^{s} \otimes K_{i} F_{j} J^{r}-F_{j} J^{m-1-r} \otimes J^{m-1-s} E_{i}-F_{j} E_{i} \otimes K_{i} J^{m-1+r-s} \\
& -\bar{K}_{j} J^{m-1-r+s} \otimes F_{j} E_{i}-\bar{K}_{j} J^{s} E_{i} \otimes F_{j} K_{i} J^{r} \\
= & \bar{K}_{j} J^{m-1-r+s} \otimes\left(E_{i} F_{j}-F_{j} E_{i}\right)+\left(E_{i} F_{j}-F_{j} E_{i}\right) \otimes K_{i} J^{m-1-s+r} \\
= & \delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} .
\end{aligned}
$$

Suppose E_{i} is type $m-1$ and F_{j} is type s for $0 \leqslant s \leqslant m-2$, we have

$$
\begin{aligned}
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)- & \Delta\left(F_{j}\right) \Delta\left(E_{i}\right)=\left(1 \otimes E_{i}+E_{i} \otimes K_{i}\right)\left(F_{j} \otimes J^{m-1-s}+\bar{K}_{j} J^{s} \otimes F_{j}\right) \\
& -\left(F_{j} \otimes J^{m-1-s}+\bar{K}_{j} J^{s} \otimes F_{j}\right)\left(1 \otimes E_{i}+E_{i} \otimes K_{i}\right) \\
= & F_{j} \otimes E_{i} J^{m-1-s}+\bar{K}_{j} J^{s} \otimes E_{i} F_{j}+E_{i} F_{j} \otimes K_{i} J^{m-1-s} \\
& +E_{i} \bar{K}_{j} J^{s} \otimes K_{i} F_{j}-F_{j} \otimes J^{m-1-s} E_{i}-F_{j} E_{i} \otimes K_{i} J^{m-1-s} \\
& -\bar{K}_{j} J^{s} \otimes F_{j} E_{i}-\bar{K}_{j} J^{s} E_{i} \otimes F_{j} K_{i} \\
= & \bar{K}_{j} J^{s} \otimes\left(E_{i} F_{j}-F_{j} E_{i}\right)+\left(E_{i} F_{j}-F_{j} E_{i}\right) \otimes K_{i} J^{m-1-s} \\
= & \delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} .
\end{aligned}
$$

Similarly, we can prove that

$$
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)-\Delta\left(F_{j}\right) \Delta\left(E_{i}\right)=\delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}}
$$

if E_{i} is type r for $0 \leqslant r \leqslant m-2$ and F_{j} is type $m-1$. So (4.11) holds for all i, j.
Finally, we prove that Δ satisfies the quantum Serre relations, i.e., the relations from (3.14) to (3.16). For (3.16). If $a_{i j}=0, E_{i}$ is type r and E_{j} is type s for $0 \leqslant r, s \leqslant m-2$, then $\Delta\left(E_{i}\right) \Delta\left(E_{j}\right)-\Delta\left(E_{j}\right) \Delta\left(E_{i}\right)=\left(J^{m-1-r} \otimes E_{i}+E_{i} \otimes K_{i} J^{r}\right)\left(J^{m-1-s} \otimes E_{j}+E_{j} \otimes K_{j} J^{s}\right)$

$$
-\left(J^{m-1-s} \otimes E_{j}+E_{j} \otimes K_{j} J^{s}\right)\left(J^{m-1-r} \otimes E_{i}+E_{i} \otimes K_{i} J^{r}\right)
$$

$$
=J^{2(m-1)-r-s} \otimes E_{i} E_{j}+J^{m-1-r} E_{j} \otimes E_{i} K_{j} J^{s}+E_{i} J^{m-1-s} \otimes K_{i} J^{r} E_{j}
$$

$$
+E_{i} E_{j} \otimes K_{i} K_{j} J^{r+s}-J^{2(m-1)-r-s} \otimes E_{j} E_{i}-J^{m-1-s} E_{i} \otimes E_{j} K_{i} J^{r}
$$

$$
-E_{j} J^{m-1-r} \otimes K_{j} J^{s} E_{i}-E_{j} E_{i} \otimes K_{j} K_{i} J^{r+s}
$$

$$
=0
$$

If $a_{i j}=0, E_{i}$ is type $m-1$ and E_{j} is type s for $0 \leqslant s \leqslant m-2$, then

$$
\begin{aligned}
\Delta\left(E_{i}\right) \Delta\left(E_{j}\right)- & \Delta\left(E_{j}\right) \Delta\left(E_{i}\right)=\left(1 \otimes E_{i}+E_{i} \otimes K_{i}\right)\left(J^{m-1-s} \otimes E_{j}+E_{j} \otimes K_{j} J^{s}\right) \\
& -\left(J^{m-1-s} \otimes E_{j}+E_{j} \otimes K_{j} J^{s}\right)\left(1 \otimes E_{i}+E_{i} \otimes K_{i}\right) \\
= & J^{(m-1)-s} \otimes E_{i} E_{j}+E_{j} \otimes E_{i} K_{j} J^{s}+E_{i} J^{m-1-s} \otimes K_{i} E_{j} \\
& +E_{i} E_{j} \otimes K_{i} K_{j} J^{s}-J^{(m-1)-s} \otimes E_{j} E_{i}-J^{m-1-s} E_{i} \otimes E_{j} K_{i} \\
& -E_{j} \otimes K_{j} J^{s} E_{i}-E_{j} E_{i} \otimes K_{j} K_{i} J^{s} \\
= & 0 .
\end{aligned}
$$

So Δ satisfies the relation $E_{i} E_{j}-E_{j} E_{i}=0$. Similarly, we can prove Δ satisfies relation $F_{i} F_{j}-F_{j} F_{i}=0$. Thus Δ satisfies relation (3.16).

Next, we prove that Δ satisfies relation (3.14). The following four cases need to be considered:
(a) E_{i} is type t, E_{j} is type $s, a_{i i}=2$, where $0 \leqslant r, s, \leqslant m-2$.
(b) E_{i} is type $m-1, E_{j}$ is type $s, a_{i i}=2$, where $0 \leqslant s, \leqslant m-2$.
(c) E_{i} is type t, E_{j} is type $m-1, a_{i i}=2$, where $0 \leqslant r, s, \leqslant m-2$.
(d) Both E_{i} and E_{j} are type $m-1$.

The case (d) has been proven in [8, pp 18-19]. The proofs of the other cases adapt from the method of [8, pp 18-19]. So we only give the proof of the case (a). Let $r=1-a_{i j}$ and

$$
u_{i j}=\sum_{\alpha=0}^{r}(-1)^{\alpha}\left[\begin{array}{l}
r \\
\alpha
\end{array}\right]_{i} E_{i}^{r-\alpha} E_{j} E_{i}^{\alpha}
$$

Since $\Delta\left(E_{i}\right)=J^{m-1-t} \otimes E_{i}+E_{i} \otimes K_{i} J^{t}$,
$\Delta\left(E_{i}^{a}\right)=J^{(m-1-t) a} \otimes E_{i}^{a}+E_{i}^{a} \otimes K_{i} J^{a t}$

$$
+\sum_{\beta=1}^{a-1} q_{i}^{\beta(a-\beta)}\left[\begin{array}{l}
a \\
\beta
\end{array}\right]_{i} J^{(m-1-t) \beta} E_{i}^{a-\beta} \otimes E_{i}^{\beta} K_{i}^{a-\beta} J^{t(a-\beta)}
$$

This implies easily that

$$
\begin{aligned}
& \Delta\left(u_{i j}\right)=J^{(m-1-t) r+(m-1-s)} \otimes u_{i j}+u_{i j} \otimes J^{t r+s} K_{i}^{r} K_{j}+\sum_{\xi=1}^{r} J^{(m-1-t)(r-\xi)+(m-1-s)} E_{i}^{\xi} \otimes X_{\xi} \\
& \quad+\sum_{l, n} E_{i}^{l} E_{j} E_{i}^{n} J^{(m-1-t)(r-l-n)} \otimes Y_{l, n}
\end{aligned}
$$

with suitable X_{ξ} and $Y_{l, n}$, and where the last sum is over the integers $l, n \geqslant 0$ with $l+n<r$. We have to show that all X_{ξ} and $Y_{l, n}$ are equal to zero.

For all l, n as above the term $Y_{l, n}$ is equal to

$$
\begin{aligned}
& \sum_{\zeta=n}^{r-l}(-1)^{\zeta}\left[\begin{array}{l}
r \\
\zeta
\end{array}\right]_{i} q_{i}^{l(r-\zeta-l)}\left[\begin{array}{c}
r-\zeta \\
l
\end{array}\right]_{i} E_{i}^{r-\zeta-l} K_{i}^{l} K_{j} q_{i}^{n(\zeta-n)}\left[\begin{array}{l}
\zeta \\
n
\end{array}\right]_{i} E_{i}^{\zeta-n} K_{i} J^{t(l-n)+s} \\
&=\left(\sum_{\zeta=n}^{r-l}(-1)^{\zeta}\left[\begin{array}{l}
r \\
\zeta
\end{array}\right]_{i} q_{i}^{l(r-\zeta-l)}\left[\begin{array}{c}
r-\zeta \\
l
\end{array}\right]_{i} E_{i}^{r-\zeta-l} K_{i}^{l}\right. \\
&\left.\times K_{j} q_{i}^{n(\zeta-n)}\left[\begin{array}{l}
\zeta \\
n
\end{array}\right]_{i} E_{i}^{\zeta-n} K_{i}\right) J^{t(l-n)+s}=0
\end{aligned}
$$

The term X_{ξ} (with $1 \leqslant \xi \leqslant r$) is equal to

$$
\begin{aligned}
\sum_{\zeta=0}^{r}(-1)^{\zeta}\left[\begin{array}{l}
r \\
\zeta
\end{array}\right]_{i} & \sum_{\beta} q_{i}^{\beta(r-\zeta-\alpha)}\left[\begin{array}{c}
r-\zeta \\
\beta
\end{array}\right]_{i} E_{i}^{r-\zeta-\beta} K_{i}^{\beta} E_{j} \\
& \times q_{i}^{(\xi-\beta)(\zeta-\xi-\beta)}\left[\begin{array}{c}
\zeta \\
\xi-\beta
\end{array}\right]_{i} E_{i}^{\zeta-\xi-\beta} K_{i}^{\xi-\beta)} J^{t(r-\xi)} \\
= & \left(\sum_{\zeta=0}^{r}(-1)^{\zeta}\left[\begin{array}{c}
r \\
\zeta
\end{array}\right]_{i} \sum_{\beta} q_{i}^{\beta(r-\zeta-\alpha)}\left[\begin{array}{c}
r-\zeta \\
\beta
\end{array}\right]_{i} E_{i}^{r-\zeta-\beta} K_{i}^{\beta} E_{j}\right. \\
& \left.\times q_{i}^{(\xi-\beta)(\zeta-\xi-\beta)}\left[\begin{array}{c}
\zeta \\
\xi-\beta
\end{array}\right]_{i} E_{i}^{\zeta-\xi-\beta} K_{i}^{\xi-\beta}\right) J^{t(r-\xi)}=0 .
\end{aligned}
$$

By now, we have proved that Δ satisfies relation (3.14). Similarly, we can prove that Δ satisfies relation (3.15).

It is easy to verify that

$$
(\Delta \otimes 1) \Delta(X)=(1 \otimes \Delta) \Delta(X)
$$

for $X=J, E_{i}, F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$. Since Δ is an algebra homomorphism, $(\Delta \otimes 1) \Delta(X)=$ $(1 \otimes \Delta) \Delta(X)$ for any $X \in w U_{q}^{\tau}(\mathcal{G})$. Similarly, we can prove $(1 \otimes \varepsilon) \Delta(X)=(\varepsilon \otimes 1) \Delta(X)=X$ for any $X \in w U_{q}^{\tau}(\mathcal{G})$. So $\left(w U_{q}^{\tau}(\mathcal{G}), \Delta, \varepsilon, \mu, \eta\right)$ is a bialgebra, where μ is the multiplication of the algebra and η is the unit of the algebra.

Lemma 4.3. T is a weak antipode of the bialgebra $w U_{q}^{\tau}(\mathcal{G})$.
Proof. First we prove that T can be extended to an anti-automorphism of $w U_{q}^{\tau}(\mathcal{G})$. It is easy to prove the following relations are true:
$\begin{array}{ll}T\left(K_{i}\right) T\left(\bar{K}_{j}\right)=T\left(\bar{K}_{j}\right) T\left(K_{i}\right), & T\left(D_{i}\right) T\left(\bar{D}_{j}\right)=T\left(\bar{D}_{j}\right) T\left(D_{i}\right), \\ T\left(D_{i}\right) T\left(\bar{K}_{j}\right)=T\left(\bar{K}_{j}\right) T\left(D_{i}\right), & T\left(K_{i}\right) T\left(\bar{D}_{j}\right)=T\left(\bar{D}_{j}\right) T\left(K_{i}\right), \\ T\left(\bar{D}_{i}\right) T\left(\bar{K}_{j}\right)=T\left(\bar{K}_{j}\right) T\left(\bar{D}_{i}\right), & T\left(J^{m-1}\right) T\left(\bar{K}_{i}\right)=T\left(\bar{K}_{i}\right), \\ T\left(J^{m-1}\right) T\left(K_{i}\right)=T\left(K_{i}\right), & T\left(J^{m-1}\right) T\left(\bar{D}_{i}\right)=T\left(\bar{D}_{i}\right), \\ T\left(J^{m-1}\right) T\left(D_{i}\right)=T\left(D_{i}\right) . & \\ T\left(E_{i}\right) T\left(E_{j}\right)=T\left(E_{j}\right) T\left(E_{i}\right), & T\left(F_{i}\right) T\left(F_{j}\right)=T\left(F_{j}\right) T\left(F_{i}\right), \quad \text { if } a_{i j}=0 .\end{array}$
If E_{i} is type $m-1$, then

$$
\begin{aligned}
T\left(E_{i}\right) T\left(K_{j}\right) & =-E_{i} J^{m-2} K_{i} \bar{K}_{j} J^{m-2} \\
& =-q_{i}^{a_{i j}} \bar{K}_{j} J^{m-2} E_{i} K_{i} J^{m-2} \\
& =q_{i}^{a_{i j}} T\left(K_{j}\right) T\left(E_{i}\right)
\end{aligned}
$$

If E_{i} is type t for $0 \leqslant t \leqslant m-2$, then

$$
\begin{aligned}
T\left(\bar{K}_{j}\right) T\left(J^{t}\right) T\left(E_{i}\right) T\left(K_{j}\right) & =-K_{j} J^{m-2} J^{(m-2) t} E_{i} J^{m-2} K_{i} \bar{K}_{j} J^{m-2} \\
& =-q_{i}^{a_{i j}} E_{i} J^{(t+2)(m-2)} K_{i},
\end{aligned}
$$

and

$$
\begin{aligned}
q_{i}^{a_{i j}} T\left(J^{t+1}\right) T\left(E_{i}\right) & =-q_{i}^{a_{i j}} J^{(m-2)(t+1)} E_{i} K_{i} J^{m-2} \\
& =-q_{i}^{a_{i j}} J^{(t+1)} E_{i} J^{(m-2)(t+2)} K_{i}
\end{aligned}
$$

Consequently,

$$
T\left(\bar{K}_{j}\right) T\left(J^{t}\right) T\left(E_{i}\right) T\left(K_{j}\right)=q_{i}^{a_{i j}} T\left(J^{t+1}\right) T\left(E_{i}\right)
$$

Similarly, we can prove

$$
T\left(F_{i}\right) T\left(K_{j}\right)=q_{i}^{-a_{i j}} T\left(K_{j}\right) T\left(F_{i}\right)
$$

if F_{i} is type $m-1$, and

$$
T\left(\bar{K}_{j}\right) T\left(J^{t}\right) T\left(F_{i}\right) T\left(K_{j}\right)=q_{i}^{-a_{i j}} T\left(J^{t+1}\right) T\left(F_{i}\right)
$$

if F_{i} is type t for $0 \leqslant t \leqslant m-2$. Moreover,

$$
\begin{aligned}
T\left(F_{j}\right) T\left(E_{i}\right)-T\left(E_{i}\right) T\left(F_{j}\right) & =J^{2(m-2)}\left(K_{j}\left(F_{j} E_{i}\right) \bar{K}_{i}-E_{i} \bar{K}_{i} K_{j} F_{j}\right) \\
& =J^{2(m-2)} K_{j}\left(F_{j} E_{i}-F_{j} E_{i}\right) \bar{K}_{i} \\
& =\delta_{i j} J^{2(m-2)} K_{j} \frac{\bar{K}_{i}-K_{i}}{q_{i}-q_{i}^{-1}} \bar{K}_{i} \\
& =\delta_{i j} \frac{T\left(K_{i}\right)-T\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} .
\end{aligned}
$$

Then we can prove that T satisfies the anti-relation for quantum Serre relations. Suppose $a_{i i}=2$ and $s=1-a_{i j}$. Then

$$
\begin{aligned}
& \sum_{r=0}^{s}(-1)^{r}\left[\begin{array}{l}
s \\
r
\end{array}\right] T\left(E_{i}\right)^{r} T\left(E_{j}\right) T\left(E_{i}\right)^{s-r} \\
&=(-1)^{s+1} J^{(s+1)(m-2)} \sum_{r=0}^{s}(-1)^{r}\left[\begin{array}{l}
s \\
r
\end{array}\right]\left(E_{i} \bar{K}_{i}\right)^{r}\left(E_{j} \bar{K}_{j}\right)\left(E_{i} \bar{K}_{i}\right)^{s-r} \\
&=(-1)^{s+1} J^{\mu} q_{i}^{v} \sum_{r=0}^{s}(-1)^{r}\left[\begin{array}{c}
s \\
r
\end{array}\right] q_{j}^{-a_{j i} r} q_{i}^{-a_{i j}(s-r)} \bar{K}_{i}^{s} E_{i}^{r} E_{j} E_{i}^{s-r} \bar{K}_{j} \\
&=(-1)^{s+1} J^{(s+1)(m-2)} q_{i}^{\frac{1}{2} a_{i i}((s-1) s} q_{j}^{-a_{j i} s} \bar{K}_{i}^{s}\left(\sum_{r=0}^{s}(-1)^{r}\left[\begin{array}{l}
s \\
r
\end{array}\right] E_{i}^{r} E_{j} E_{i}^{s-r}\right) \bar{K}_{j} \\
&=0
\end{aligned}
$$

where $\mu=(s+1)(m-2), v=\frac{1}{2} a_{i i}(s-1) s$. Similarly, we can prove that

$$
\sum_{r=0}^{s}(-1)^{r}\left[\begin{array}{l}
s \\
r
\end{array}\right] T\left(F_{i}\right)^{r} T\left(F_{j}\right) T\left(F_{i}\right)^{s-r}=0 \quad \text { if } \quad a_{i i}=2
$$

From the above discussion, we get that T is an anti-automorphism of $w U_{q}^{\tau}(\mathcal{G})$. Finally, we prove that $T * \mathrm{id} * T=T$ and $\mathrm{id} * T * \mathrm{id}=\mathrm{id}$. It is easy to verify $T * \mathrm{id} * T(X)=T(X)$ and $\operatorname{id} * T * \operatorname{id}(X)=X$ for $X=K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, J$.

Suppose E_{i} is type t for $0 \leqslant t \leqslant m-2$. Then
$(1 \times \Delta) \Delta\left(E_{i}\right)=J^{m-1-t} \otimes J^{m-1-t} \otimes E_{i}+J^{m-1-t} \otimes E_{i} \otimes K_{i} J^{t}+E_{i} \otimes K_{i} J^{t} \otimes K_{i} J^{t}$.
So

$$
\begin{aligned}
T * \operatorname{id} * T\left(E_{i}\right)= & -J^{(m-1-t)(m-1)} E_{i} J^{(m-2)} \bar{K}_{i} \\
& +J^{(m-1-t)(m-2)} E_{i} \bar{K}_{i} J^{t(m-2)}-E_{i} \bar{K}_{i} J^{m-2+t} K_{i} \bar{K}_{i} J^{(m-2) t} \\
= & -E_{i} J^{(m-2)} \bar{K}_{i}+E_{i} \bar{K}_{i}-E_{i} \bar{K}_{i} \\
= & T\left(E_{i}\right) . \\
\operatorname{id} * T * \operatorname{id}\left(E_{i}\right)= & J^{(m-1-t)(m-1)} E_{i}-J^{(m-1-t)} E_{i} J^{m-2} \bar{K}_{i} K_{i} J^{t}+E_{i} \bar{K}_{i} J^{(m-2) t+m-2} K_{i} \bar{K}_{i} J^{t} \\
= & E_{i} .
\end{aligned}
$$

Suppose E_{i} is type $m-1$. Then

$$
(1 \times \Delta) \Delta\left(E_{i}\right)=1 \otimes 1 \otimes E_{i}+1 \otimes E_{i} \otimes K_{i}+E_{i} \otimes K_{i} \otimes K_{i}
$$

Hence,

$$
\mathrm{id} * T * \operatorname{id}\left(E_{i}\right)=E_{i}-E_{i} J^{m-2} \bar{K}_{i} K_{i}+E_{i} \bar{K}_{i} J^{m-2} K_{i}=E_{i},
$$

and

$$
T * \mathrm{id} * T\left(E_{i}\right)=-E_{i} J^{m-2} \bar{K}_{i}+E_{i} J^{m-2} \bar{K}_{i}-E_{i} J^{m-2} \bar{K}_{i} K_{i} \bar{K}_{i} J^{m-2}=T\left(E_{i}\right)
$$

Similarly we can prove that $\operatorname{id} * T * \operatorname{id}\left(F_{i}\right)=F_{i}$ and $\operatorname{id} * T * \operatorname{id}\left(F_{i}\right)=F_{i}$.
Since

$$
\mathrm{id} * T * \operatorname{id}=(\mu \otimes 1) \mu(\mathrm{id} \otimes T \otimes \mathrm{id})(\Delta \otimes 1) \Delta
$$

$\mathrm{id} * T * \mathrm{id}$ is a linear automorphism of $w U_{q}^{\tau}(\mathcal{G})$. To prove $(\mathrm{id} * T * \mathrm{id})(X)=X$, for any $X \in w U_{q}^{\tau}(\mathcal{G})$, we only need prove that

$$
\begin{equation*}
(\mathrm{id} * T * \mathrm{id})(x y)=x y \tag{4.12}
\end{equation*}
$$

provided that $(\mathrm{id} * T * \mathrm{id})(x)=x$, and y is one of the generators $K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, E_{i}, F_{i}, J$. Suppose $(\Delta \otimes 1) \Delta(x)=\sum x_{(1)} \otimes x_{(2)} \otimes x_{(3)}$. Then $(\Delta \otimes 1) \Delta(x J)=\sum x_{(1)} J \otimes x_{(2)} J \otimes x_{(3)} J$ and hence

$$
\mathrm{id} * T * \operatorname{id}(x J)=\sum x_{(1)} J J^{m-2} T\left(x_{(2)}\right) x_{(3)} J=x J
$$

Suppose E_{i} is type t for $0 \leqslant t \leqslant m-2$. Then

$$
\begin{aligned}
\mathrm{id} * T * \operatorname{id}\left(x E_{i}\right)= & \sum x_{(1)} J^{m-1-t} J^{(m-1-t)(m-2)} T\left(x_{(2)}\right) x_{(3)} E_{i} \\
& -\sum x_{(1)} J^{m-1-t} E_{i} J^{m-2} \bar{K}_{i} T\left(x_{(2)}\right) x_{(3)} K_{i} J^{t} \\
& +\sum x_{(1)} E_{i} \bar{K}_{i} J^{(m-2) t} T\left(x_{(2)}\right) x_{(3)} K_{i} J^{t} \\
= & x E_{i},
\end{aligned}
$$

If E_{i} is type $m-1$, then

$$
\begin{aligned}
\mathrm{id} * T * \operatorname{id}\left(x E_{i}\right)= & \sum x_{(1)} T\left(x_{(2)}\right) x_{(3)} E_{i}-\sum x_{(1)} E_{i} J^{m-2} \bar{K}_{i} T\left(x_{(2)}\right) x_{(3)} K_{i} \\
& +\sum x_{(1)} E_{i} \bar{K}_{i} J^{(m-2)} T\left(x_{(2)}\right) x_{(3)} K_{i} \\
= & x E_{i} .
\end{aligned}
$$

We can prove (4.12) is true for other generators of $w U_{q}^{\tau}(\mathcal{G})$. So id $* T * \operatorname{id}(x)=x$ for any $x \in U^{\tau}(\mathcal{G})$ by induction.

Similarly, we can prove $T * \mathrm{id} * T(x)=T(x)$ for any $x \in w U_{q}^{\tau}(\mathcal{G})$. So T is a weak antipode of $w U_{q}^{\tau}(\mathcal{G})$, and $w U_{q}^{\tau}(\mathcal{G})$ is a weak Hopf algebra.

Corollary 4.1. $w U^{\tau}(\mathcal{G})$ is a noncommutative and noncocommutative weak Hopf algebra with the weak antipode T, but not a Hopf algebra.

Proof. We only need to prove that it is not a Hopf algebra. If it is a Hopf algebra with an antipode S, then $S(J) J=1$ and J is invertible. This is impossible because $J\left(J^{m-1}-1\right)=0$.

Corollary 4.2. $w U^{\tau}(\mathcal{G}) /(1-J)$ is isomorphic to the usual quantized enveloping algebra $U_{q}(\mathcal{G})$.

Since J^{m-1} is a central idempotent element, $w U_{q}^{\tau}(\mathcal{G})=w U_{q}^{\tau}(\mathcal{G}) J^{m-1} \oplus w U_{q}^{\tau}(\mathcal{G})(1-$ J^{m-1}) as algebras. It is easy to prove that $w U_{q}^{\tau}(\mathcal{G}) J^{m-1}$ is a subcoalgebra of $w U_{q}^{\tau}(\mathcal{G})$. For any co-algebra H, the set of group-like elements of H is denoted by $G(H)$. With this notation, we have the following.

Proposition 4.1. (1) $w U_{q}^{\tau}(\mathcal{G}) J^{m-1}=w U_{q}^{\tau}(\mathcal{G}) J$ is a sub-weak-Hopf-algebra of $w U_{q}^{\tau}(\mathcal{G})$.
(2) $G\left(w U_{q}^{\tau}(\mathcal{G})\right)=G\left(w U_{q}^{\tau}(\mathcal{G}) J^{m-1}\right) \cup\{1\}$.

Proof. Since $T\left(J^{m-1}\right)=J^{(m-1)(m-2)}=J^{m-1}, w U_{q}^{\tau}(\mathcal{G}) J^{m-1}$ is a sub-weak-Hopf-algebra of $w U_{q}^{\tau}(\mathcal{G})$. Moreover, since $J \in w U_{q}^{\tau}(\mathcal{G}) J^{m-1}$,

$$
J w U_{q}^{\tau}(\mathcal{G}) J^{m-1}=w U_{q}^{\tau}(\mathcal{G}) J \subseteq w U_{q}^{\tau}(\mathcal{G}) J^{m-1} \subseteq w U_{q}^{\tau}(\mathcal{G}) J .
$$

Hence, $w U_{q}^{\tau}(\mathcal{G}) J^{m-1}=w U_{q}^{\tau}(\mathcal{G}) J$.
By now we have completed the proof of (1). Next, we prove (2).
If $g \in w G\left(U_{q}^{\tau}(\mathcal{G})\right)$, then $g=g J^{m-1}+g\left(1-J^{m-1}\right)$. Let $g_{1}=g J^{m-1}, g_{2}=g\left(1-J^{m-1}\right)$. Then $g \otimes g=\Delta(g)=g_{1} \otimes g_{1}+g_{1} \otimes g_{2}+g_{2} \otimes g_{1}+g_{2} \otimes g_{2}$. Since $\Delta\left(g_{1}\right)=g_{1} \otimes g_{1}$ is a group-like element, $\Delta\left(g_{2}\right)=g_{1} \otimes g_{2}+g_{2} \otimes g_{1}+g_{2} \otimes g_{2}$. So
$(1 \otimes \Delta) \Delta\left(g_{2}\right)=g_{1} \otimes g_{1} \otimes g_{2}+g_{1} \otimes g_{2} \otimes g_{1}+g_{1} \otimes g_{2} \otimes g_{2}+g_{2} \otimes g_{1} \otimes g_{1}$

$$
+g_{2} \otimes g_{1} \otimes g_{2}+g_{2} \otimes g_{2} \otimes g_{1}+g_{2} \otimes g_{2} \otimes g_{2}
$$

Then

$$
\left\{\begin{array}{l}
(T * \mathrm{id} * T)\left(g_{2}\right)=T\left(g_{2}\right) g_{2} T\left(g_{2}\right)=T\left(g_{2}\right) \tag{4.13}\\
(\mathrm{id} * T * \operatorname{id})\left(g_{2}\right)=g_{2} T\left(g_{2}\right) g_{2}=g_{2}
\end{array}\right.
$$

Because $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is generated by $E_{i}\left(1-J^{m-1}\right), F_{j}\left(1-J^{m-1}\right), 1-J^{m-1}$ and $T\left(E_{i}\left(1-J^{m-1}\right)\right)=T\left(F_{j}\left(1-J^{m-1}\right)\right)=0, T\left(g_{2}\right)=k\left(1-J^{m-1}\right)$ for some $k \in \mathbf{K}$. From (4.13), we obtain the following:

$$
\left\{\begin{array}{l}
k^{2} g_{2}=k^{2}\left(1-J^{m}\right)^{2} g_{2}=k\left(1-J^{m}\right), \tag{4.14}\\
k g_{2}^{2}\left(1-J^{m}\right)=k g_{2}^{2}=g_{2}
\end{array}\right.
$$

If $k=0$, then $g=g_{1} \in G\left(w U_{q}^{\tau}(\mathcal{G}) J^{m-1}\right)$. If $k \neq 0$, then $g_{2}=\frac{1}{k}\left(1-J^{m}\right)$. Thus
$\frac{1}{k}\left(1 \otimes 1-J^{m} \otimes J^{m}\right)=\frac{1}{k} g_{1} \otimes\left(1-J^{m}\right)+\frac{1}{k}\left(1-J^{m}\right) \otimes g_{1}+\frac{1}{k^{2}}\left(1-J^{m}\right) \otimes\left(1-J^{m}\right)$.
Multiplying by $k\left(J^{m} \otimes 1\right)$ on the both sides of the above equation, we get

$$
J^{m} \otimes 1-J^{m} \otimes J^{m}=g_{1} \otimes\left(1-J^{m}\right)
$$

Similarly, we have

$$
1 \otimes J^{m}-J^{m} \otimes J^{m}=\left(1-J^{m}\right) \otimes g_{1}
$$

Then
$1 \otimes 1-J^{m} \otimes J^{m}=J^{m} \otimes 1+1 \otimes J^{m}-2 J^{m} \otimes J^{m}+\frac{1}{k}\left(1-J^{m}\right) \otimes\left(1-J^{m}\right)$.
Hence,

$$
\left(1-J^{m}\right) \otimes\left(1-J^{m}\right)=\frac{1}{k}\left(1-J^{m}\right) \otimes\left(1-J^{m}\right)
$$

Consequently, $k=1$. Note that the set of group-like elements are linearly independent. So we get $g_{1}=J^{m}$ from $1 \otimes J^{m}-J^{m} \otimes J^{m}=\left(1-J^{m}\right) \otimes J^{m}=\left(1-J^{m}\right) \otimes g_{1}$. Hence, $g=1$.

Proposition 4.2. Let $\bar{J}=\frac{1}{m-1} \sum_{r=1}^{m-1} J^{r}$. Then \bar{J} is a central idempotent element. Moreover $w U^{\tau}(\mathcal{G}) \bar{J}$ is isomorphic to the usual quantized enveloping algebra $U_{q}(\mathcal{G})$ as algebras.

Proof. Define $\phi\left(E_{i} \bar{J}\right)=e_{i}, \phi\left(F_{i} \bar{J}\right)=f_{i}, \phi\left(K_{i} \bar{J}\right)=k_{i}, \phi\left(D_{i} \bar{J}\right)=q_{i}^{d_{i}}, \phi\left(\bar{K}_{i} \bar{J}\right)=k_{i}^{-1}$, $\phi\left(\bar{D}_{i} \bar{J}\right)=q_{i}^{-d_{i}}$. It is easy to prove that ϕ is a well-defined homomorphism of algebras with inverse mapping φ defined as follows. $\varphi\left(e_{i}\right)=E_{i} \bar{J}, \varphi\left(f_{i}\right)=F_{i} \bar{J}, \varphi\left(k_{i}\right)=K_{i} \bar{J}, \varphi\left(q_{i}^{d_{i}}\right)=$ $D_{i} \bar{J}, \varphi(1)=\bar{J}$.

5. The representation of $w U_{q}^{\tau}(\mathcal{G})$

In this section, we try to determine the irreducible representation of $w U_{q}^{\tau}(\mathcal{G})$. Suppose V is a simple module over $w U_{q}^{\tau}(\mathcal{G})$. Let $\bar{J}=\frac{1}{m-1} \sum_{r=1}^{m-1} J^{r}$. Then \bar{J} is a central idempotent element of $w U_{q}^{\tau}(\mathcal{G})$ and $\bar{J}=J^{m-1} \bar{J}$. So

$$
w U_{q}^{\tau}(\mathcal{G})=w U_{q}^{\tau}(\mathcal{G}) \bar{J} \oplus w U_{q}^{\tau}(\mathcal{G})\left(J^{m-1}-\bar{J}\right) \oplus w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)
$$

is a direct sum of algebras. Let $w_{1}=w U_{q}^{\tau}(\mathcal{G}) \bar{J}, w_{2}=U_{q}^{\tau}(\mathcal{G})\left(J^{m-1}-\bar{J}\right)$ and $w_{3}=$ $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$. Then any module over $w U_{q}^{\tau}(\mathcal{G})$ can be decomposed as follows:

$$
V=V_{1} \oplus V_{2} \oplus V_{3},
$$

where $V_{1}=\bar{J} V, V_{2}=\left(J^{m-1}-\bar{J}\right) V$ and $V_{3}=\left(1-J^{m-1}\right) V$. It is obvious that V_{i} are modules over w_{i}, respectively. If V is a simple $w U_{q}^{\tau}(\mathcal{G})$ module, then either $V=V_{1}$, or $V=V_{2}$ or $V=V_{3}$.

If $V=V_{1}$, then $J v=v$ for any $v \in V$. Suppose $v \in V$ satisfying $K_{i} v=\lambda_{i} v$, then $\lambda_{i} \neq 0$. In this case, $K_{i} \bar{K}_{i} K_{i} v=\lambda_{i}^{2} \bar{K}_{i}=\lambda_{i} v$. So $\bar{K}_{i} v=\frac{1}{\lambda_{i}} v$.

If $V=V_{2}$, then $\bar{J} v=0$ for any $v \in V$. If there is an eigenvector v of J, then $J v=v^{t} v$, where v is an $(m-1)$ th primitive root of 1 and t is an integer satisfying $1 \leqslant t \leqslant m-1$. Suppose $K_{i} v=\lambda_{i} v$, then $\lambda_{i} \neq 0$. In this case, $K_{i} \bar{K}_{i} K_{i} v=\lambda_{i}^{2} \bar{K}_{i}=v^{t} \lambda_{i} v$. So $\bar{K}_{i} v=\frac{v^{t}}{\lambda_{i}} v$.

If $V=V_{3}$, then $J v=0$ for any $v \in V, K_{i} v=K_{i} J^{m-1} v=0$ and $\bar{K}_{i} v=\bar{K}_{i} J^{m-1} v=0$ for any $v \in V$.

By now we have completed the proof of the following proposition.
Proposition 5.1. Let V be a simple $w U_{q}^{\tau}(\mathcal{G})$ module. Then either $J v=v$ for all $v \in V$, or $J v=0$ for any $v \in V$, or $\bar{J} v=0$ for any $v \in V$. Suppose there exists an $i \in I$ such that $K_{i} v=\lambda_{i} v$ for some nonzero vector v. Then $\bar{K}_{i} v=\bar{\lambda}_{i} v$ for some λ_{i}, where

$$
\bar{\lambda}_{i}= \begin{cases}\lambda_{i}^{-1}, & \text { if } \quad \lambda_{i} \neq 0 ; J v=v \\ \frac{v^{t}}{\lambda_{i}^{-1}}, & \text { if } \quad \lambda_{i} \neq 0 ; \bar{J} v=0, v \text { is an eigenvector of } J \\ 0, & \text { if } \quad \lambda_{i}=0,\end{cases}
$$

and v is a primitive root of 1 and t is an integer satisfying $1 \leqslant t \leqslant m-1$. Moreover, $\lambda_{i} \neq 0$ if and only if $J v \neq 0$.

Suppose $V=V_{1}$. Then V can be viewed as a module over $w U_{q}^{\tau}(\mathcal{G}) /(1-J)$. Note that $w U_{q}^{\tau}(\mathcal{G}) /(1-J)$ is isomorphic to $U_{q}(\mathcal{G})$ as algebras. In this case, V has been studied by Kang [9]. For example, the limit $q \rightarrow 1$ of highest weight simple module is a highest weight simple module over the generalized Kac-Moody algebra \mathcal{G} with the same weight λ. Then this simple module is uniquely determined by its formal Borcherds-Kac-Weyl character formula (see section 1).

Suppose $V=V_{3}$. Then $J V=0$ and $K_{i} V=\bar{K}_{i} V=0$ for any $i \in I$ by proposition 5.1. Similarly, we can prove that $D_{i} V=\bar{D}_{i} V=0$ for all $i \in I$. Hence, $E_{i} F_{j} V=F_{j} E_{i} V$ for all $i, j \in I$. Moreover, V can be viewed as a module over $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$. Recall that $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is generated by $E_{i}\left(1-J^{m-1}\right)$, and $F_{j}\left(1-J^{m-1}\right)$, where E_{i}, F_{j} are type $m-1$. Hence, $E_{i}\left(1-J^{m-1}\right) F_{j}\left(1-J^{m-1}\right) V=F_{j}\left(1-J^{m-1}\right) E_{i}\left(1-J^{m-1}\right) V$ for all $i, j \in I$. In the following, we try to determine the structure of V in some special cases. Let $X_{i}=E_{i}\left(1-J^{m-1}\right), Y_{i}=F_{i}\left(1-J^{m-1}\right)$. Then every simple module V over $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is a module over the algebra generated by $\left\{X_{i}, Y_{j} \mid\right.$ for $\left.i \in I_{1}, j \in I_{2}\right\}$, where $I_{1}=\left\{i \in I \mid E_{i}\right.$ is type $\left.m-1\right\}, I_{2}=\left\{j \in I \mid F_{j}\right.$ is type $\left.m-1\right\}$. The generators X_{i}, Y_{j} satisfy the following relation:

$$
\begin{aligned}
& X_{i} Y_{j}=Y_{j} X_{i}, \\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} X_{i}^{1-a_{i j}-r} X_{j} X_{i}^{r}=0 \quad \text { if } \quad a_{i i}=2, i \neq j, \\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{i} Y_{i}^{1-a_{i j}-r} Y_{j} Y_{i}^{r}=0
\end{aligned} \quad \text { if } \quad a_{i i}=2, i \neq j, ~ \text { if } \quad a_{i j}=0 . ~ \$ Y_{i} X_{j}-X_{j} X_{i}=Y_{i} Y_{j}-Y_{j} Y_{i}=0, \quad l \begin{aligned}
& \text {, }
\end{aligned}
$$

This simple module V satisfies $J V=0$. From the above discussion, we obtain the following result.

Corollary 5.1. If $a_{i j}=0$ for any $j \neq i$, where $i \in I_{1} \cap I^{+}, j \in I_{2}$, then every simple module over $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is isomorphic to

$$
w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right) / M
$$

where M is a maximal ideal of $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$.
In the case that $I_{1} \cup I_{2}$ is a finite set, we can obtain the following results. By corollary 5.1, the only simple over $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is $\mathbf{K}[x] /(p(x))$ if $\left|I_{1} \cup I_{2}\right|=1$, where $p(x)$ is an irreducible polynomial in $\mathbf{K}[x]$. Suppose \mathbf{K} is an algebraically closed field. If $a_{i j}=0$ for any $i \in\left(I_{1} \cup I_{2}\right) \cap I^{+}$, and $\left|I_{1} \cup I_{2}\right|=n$, then the simple module V over $w U_{q}^{\tau}(\mathcal{G})\left(1-J^{m-1}\right)$ is isomorphic to $\mathbf{K}\left[X_{i}, Y_{j} \mid i \in I_{1}, j \in I_{2}\right] /\left(\left\{X_{i}-a_{i}, Y_{j}-b_{j} \mid i \in I_{1}, j \in I_{2}\right\}\right)$ for some $\left(\left(a_{i}\right)_{i \in I_{1}},\left(b_{j}\right)_{j \in I_{2}}\right) \in \mathbf{K}^{n}$.

Acknowledgments

The author is sponsored by SRF for ROCS, SEM. He is also sponsored by the Scientific Research Foundation of Zhejiang Provincial Education Department. He would like to thank the referee for careful reading and useful comments on this paper, which greatly improve many of these results.

References

[1] Aizawwa N and Isaac P S 2003 Weak Hopf algebras corresponding to $U_{q}\left[s l_{n}\right]$ J. Math. Phys. 44 5250-67
[2] Böhm G, Nil F and Szlachányi K 1998 Weak Hopf algebras: I. Integral theory and C^{*}-structure J. Algebra 221 385-438
[3] Borcherds R E 1988 Generalised Kac-Moody algebras J. Algebra 115 501-12
[4] Borcherds R E 1992 Monstrous moonshine and monstrous Lie superalgebras Invent. Math. 109 405-44
[5] Borcherds R E 1986 Vertex algebras, Kac-Moody algebras and the monster Proc. Natl Acad. Sci. USA 83 3068-71
[6] Chin W and Musson I M 2000 Corrigenda, the coradical filtration for quantized enveloping algebras J. Lond. Math. Soc. 61 319-20
[7] Hayashi T 1991 An algebra related to the fusion rules of Wess-Zumino-Witten models Lett. Math. Phys. 22 291-6
[8] Jantzen J C 1995 Lectures on Quantum Group vol 6 (Providence, RI: American Mathematical Society)
[9] Kang S-J 1995 Quantum deformations of generalised Kac-Moody algebras and their modules J. Algebra 175 1041-66
[10] Kang S-J 2003 Crystal bases for quantum affine algebras and combinatorics of Young walls Proc. Lond. Math. Soc. 86 29-69
[11] Jeong K, Kang S-J and Kashiwara M 2205 Crystal bases for quantum generalised Kac-Moody algebras and their modules Proc. Lond. Math. Soc. 90 395-438
[12] Li F and Duplij S 2002 Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation Commun. Math. Phys. 225 191-217
[13] Nichols W D and Taft E J 1982 The Left Antipodes of a Left Hopf Algebra (Contemp. Math. vol 13) (Providence, RI: Ametrica Mathematical Society)
[14] Sweedler M E 1960 Hopf Algebrss (New York: Benjamin)
[15] Yang S 2005 Weak Hopf algebras corresponding to Cartan matrices J. Math. Phys. 46 1-18
[16] Yamanouchi T 1994 Duality for generalized Kac algebras and a characterization of finite groupoid J. Algebra 163 9-50

